Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lei Hou, ${ }^{\text {a }}$ Dan Lia* and Seik Weng $\mathbf{N g}^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Shantou University, Shantou, Guangdong 515063, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: dli@stu.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.041$
$w R$ factor $=0.110$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

[4'-(4-Pyridyl)-2,2': $6^{\prime}, 2^{\prime \prime}$-terpyridine- $\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right]$ dithiocyanatozinc(II)

In the title complex, $\left[\mathrm{Zn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4}\right)\right]$, the $\mathrm{Zn}^{\text {II }}$ atom is coordinated by a tridentate chelating 4^{\prime}-(4-pyridyl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$ terpyridine (pyterpy) ligand and two thiocyanate groups, to form a distorted trigonal-bipyramidal coordination geometry.

Received 18 October 2004 Accepted 20 October 2004 Online 30 October 2004

Comment

The ligand 4^{\prime}-(4-pyridyl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (pyterpy) contains two discrete metal-binding domains, as expected, which would result in macrocyclic oligomers or linear polymers through coordination of the monodentate pendant pyridyl group (Sun \& Lees, 2001; Hayami et al., 2004). As a continuing effort of our research on complexes of terpyridine derivatives (Hou, Li, Wu et al., 2004; Hou, Li, Yin et al., 2004; Tu et al., 2004), we report here the mononuclear complex [4^{\prime} -(4-pyridyl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine- $\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right]$ dithiocyanatozinc(II), (I), using this ligand.

(I)

In complex (I), the Zn center is coordinated by three N atoms from the pyterpy ligand and two N atoms from two thiocyanate groups, displaying a distorted trigonal-bipyramidal geometry. The two axial sites are occupied by the terminal pyridyl N atoms of the pyterpy ligand, with $\mathrm{Zn}-\mathrm{N}$ distances $[2.159$ (2) and 2.182 (3) \AA A which are longer than the equatorial $\mathrm{Zn}-\mathrm{N}$ distance $[2.089(2) \AA$] to the central pyridyl ring, as a consequence of the rigid structure of the terpyridyl unit. The values of the bite angles of the terpyridyl unit are 74.8 (1) and $74.9(1)^{\circ}$.

Experimental

The 4^{\prime}-(4-pyridyl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine ligand was synthesized according to a literature method (Constable \& Thompson, 1992). A mixture of zinc chloride $(0.027 \mathrm{~g}, 0.2 \mathrm{mmol})$, pyterpy $(0.062 \mathrm{~g}$, $0.2 \mathrm{mmol})$, ammonium thiocyanate ($0.017 \mathrm{~g}, 0.4 \mathrm{mmol}$) and water $(10 \mathrm{ml})$ was heated to 413 K for 72 h , and then cooled to room temperature at a rate of 1 K every 10 min . X-ray quality yellow crystals of the compound were obtained in ca 75% yield.

Crystal data

$\left[\mathrm{Zn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4}\right)\right]$	$Z=2$
$M_{r}=491.88$	$D_{x}=1.543 \mathrm{Mg} \mathrm{m}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.5358(7) \AA$	Cell parameters from 2515
$b=10.7110(8) \AA$	reflections
$c=12.2233(9) \AA$	$\theta=2.2-23.3^{\circ}$
$\alpha=65.862(1)^{\circ}$	$\mu=1.38 \mathrm{~mm}^{-1}$
$\beta=68.360(1)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=80.330(1)^{\circ}$	Block, yellow
$V=1058.8(1) \AA^{3}$	$0.24 \times 0.18 \times 0.15 \mathrm{~mm}$
Data collection	
Bruker SMART APEX area-	3704 independent reflections
\quad detector diffractometer	3131 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.021$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-11 \rightarrow 11$
$T_{\text {min }}=0.702, T_{\text {max }}=0.820$	$k=-12 \rightarrow 12$
7692 measured reflections	$l=-14 \rightarrow 14$
$R e f i n e m e n t$	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0693 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$	$\quad+0.053 P]$
$w R\left(F^{2}\right)=0.110$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.02$	$(\Delta / \sigma)_{\max }=0.001$
3704 reflections	$\Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3}$
280 parameters	$\Delta \rho_{\min }=-0.44 \mathrm{e} \AA^{-3}$
H -atom parameters constrained	

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Zn1-N1	$2.159(2)$	Zn1-N5	$1.979(3)$
Zn1-N2	$2.089(2)$	Zn1-N6	$1.965(3)$
Zn1-N3	$2.181(3)$		
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$74.9(1)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 5$	$119.2(1)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$149.5(1)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 6$	$130.5(1)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 5$	$99.6(1)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 5$	$97.2(1)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 6$	$98.8(1)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 6$	$99.0(1)$
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 3$	$74.8(1)$	$\mathrm{N} 5-\mathrm{Zn} 1-\mathrm{N} 6$	$110.3(1)$

H atoms were placed at calculated positions $[\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ and were refined using the riding-model approximation.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1
ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (Nos. 20271031 and 29901004), the Natural Science Foundation of Guangdong Province (No. 021240) and the University of Malaya for supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Constable, E. C. \& Thompson, A. M. W. C. (1992). J. Chem. Soc. Dalton Trans. pp. 2947-2950.
Hou, L., Li, D., Wu, T., Yin, Y.-G. \& Ng, S. W. (2004). Acta Cryst. E60, m1181m1182.
Hou, L., Li, D., Yin, Y.-G., Wu, T. \& Ng, S. W. (2004). Acta Cryst. E60, m1106m1107.
Hayami, S., Hashiguchi, K., Juhász, G., Ohba, M., Okawa, H., Maeda, Y., Kato, K., Osaka, K., Takata, M. \& Inoue, K. (2004). Inorg. Chem. 43, 4124-4126.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, S.-S. \& Lees, A. J. (2001). Inorg. Chem. 40, 3154-3160.
Tu, Q.-D., Li, D., Wu, T., Yin, Y.-G. \& Ng, S. W. (2004). Acta Cryst. E60, m1403m1404.

